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The aim of the present paper is to show that a bounded Boolean power of an 
effect algebra has all the analogous properties required for Pt~ik's sum of a Boolean 
algebra and an orthomodular lattice and to prove a theorem about its completeness. 
We also give for elements of that Ptfik sum an important form for their expression. 

1. B O O L E A N  P O W E R  OF AN E F F E C T  A L G E B R A  AS A 
P T A K  S U M  

In the axiomatic approach to quantum mechanics,  the event structure 
o f  a physical system is a quantum logic (Ptfik and Pulmannov~i, 1981). 
Recently there has appeared a new axiomatic model,  a difference poset (K6pka 
and Chovanec,  1994) which is in some sense an effect algebra (Foulis and 
Bennett, 1994) representing unsharp measurements or observations on a 
physical system. 

Definition 1.1. Let (P; Q,  0, 1) be a system consisting of  a set P with 
two special elements 0, 1 ~ P and equipped with a partially defined binary 
operation �9 satisfying the fol lowing conditions for all p, q, r ~ P: 

(i) p �9 q = q �9 p if one side is defined. 
(ii) p O ( q Q r )  = ( p |  O q if one side is defined. 

(iii) For every p e P there exists a unique q E P such that p �9 q = 1. 
(iv) I f l  O p i s d e f i n e d ,  t h e n p  = 0. 

Then (P; O,  0, 1) is called an effect algebra. 
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In every effect algebra we introduce the partial ordering via a -< b iff 
there exists c ~ P with a �9 c = b and the partially defined binary operation 
Q v i a b G a i s d e f i n e d a n d b G a  = c i f f a O c i s d e f i n e d a n d a @ c = b ,  
for all a, b, c c P. 

From now on, we make the assumptions that (B; v, A, 08, 18) is a 
Boolean algebra and (P, Op, 0p, le) is an effect algebra and we denote them 
briefly B and P. According to Burris (1975), we shall call a bounded Boolean 
power (of P by B) the effect algebra which has as its universe the set 

P[B]* = { f  ~ BP[f(P) is a finite subset of  B 

w i t h f ( P )  = 18 a n d f ( t 0  Af(t2) = 08 for all t l r  t2, tl, t2 e P} 

The partial binary operation @ on P[B]* is defined as follows: 
For f ,  g ~ P[B]*, fO g is defined i f f fo r  all a, b ~ P w i t h f ( a )  A g(b) 

:~ 0B the operation a 08 b is defined, in which case 

f O  g(t) = v{ f ( a )  ^ g(b)la, b ~ P with a Op b = t}, t ~ P 

Moreover,  

0(0e) = 18 and 0(t) = 08 for all t v~ 0p 

l(1e) = 18 and l(t) = 08 for all t v ~ 1p 

We leave to the reader the verification that (P[B]*, 0 ,  0, 1) is an effect 
algebra. We also will leave to the reader the verification that the partial order 
on P[B]* is defined via 

f - - < g  iff v{f(a)/xg(b)la, b E Pwi tha - - -b}  = 1 

and the difference operation O (associated to O)  is as follows: 
f O g  is defined i f f f -  < g, in which case ( f O  g)(t) = v { f ( a ) / x  g(b)la, 

b ~ P w i t h a O e b  = t } , t  ~ P. 
If  B is complete, then we can omit in the definition the requirement that 

f(P) is finite; we obtain a Boolean power P[B] (Burris, 1975). 
It is easily seen that for e v e r y f  E P[B]* there exist a uniquely defined 

n ~ N, mutually orthogonal nonzero elements al, a 2 . . . . .  an ~ B with v{a~l k 
= 1, 2 . . . . .  n} = 1, and mutually different elements b,, b2 . . . . .  b,, ~ P 
such thatf(bk) = ak for k = 1, 2 . . . . .  n and f ( t )  = 08 for every t ~ P\{bl, 
b2 . . . . .  bn}. According to that we shall use (for brevity) the notation [(a~, 
bt) . . . . .  (an, bn)] instead of  the definition o f f  and in that case we shall write 
f = [(al, bl) . . . . .  (an, bn)]. Thus we have 1 = [(18, 1e)] and 0 = [(18, 0p)]. 
It is routine to show that the maps 

tp: a ~ B -~ q~(a) = [(a, 1p), (a ' ,  Op)] ~ P[B]* 

tb: b ~ P -+ t~(b) = [(18, b)] ~ P[B]* 
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are embeddings  which preserve all suprema and infima existing in B, resp. P. 

Proposition 1.1. If  for elements  a, b of  an effect algebra P there exist 
a v b ,  a A b ,  a n d a @ p b ,  t h e n a O p b  = ( a v b )  O e ( a A b ) .  

See Rie~anovfi (n.d.) for the proof.  

Proposition 1.2. For all 0B ~ a E B, b ~ P there exists q~(a) A +(b). 
Moreover ,  if a, c ~ B are such that a A C = 0B and b, d ~ P, then there exists 

(tp(a) A +(b))  v (tp(c) A t~(d)) = (q~(a) A t~(b)) O (q~(c) A t~(d)) 

Proof It is easy to see that 

(q~(a) A t~(b)) v (q~(c) A t~(d)) 

= [(a, b), (a ' ,  0p)] v [(c, d) ,  (c ' ,  0p)] 

t t = [ ( a ' A C ,  0 e v d ) , ( a A c , b v 0 p ) , ( a ' A C , 0 p ) ]  

= [(a, b), (c, d),  (a '  A C', 0p)] 

if  a '  A c '  :P 0B and it is equal to [(a, b), (c, d)] if a '  A C' = 0B. Moreover ,  

1 G ~p(c) A +(d)  

= [(1B, 1p)] G [(c, d),  (c ' ,  0p)] 

= [(c, 1p G p  d),  (c ' ,  1p Op 0p)] 

--> [(a, b), (a ' ,  Oe)] 

= r A t~(b) 

which implies that (q~(a) A +(b)) O (q~(c) A qffd)) exists. Using Proposit ion 
1.1, we have 

(q~(a) A t~(b)) G (q~(c) A t~(d)) 

= (q)(a) A t~(b)) v (q~(c) A t~(d)) 

since q~(a) A q)(C) = 0. 

Proposition 1.3. L e t f  = [(al, bl) . . . . .  (an, bn)] e P[B]*. Then 

f = v{ q~(a~) A t~(bk) l k = 1, 2 . . . . .  n} 

= (q0(a0 A ~(bl))  G " '"  G (cp(an) A ~(bn)) 

Proof It is routine to show t h a t f  = [(at, b p  . . . . .  (an, bn)] = v{q~(a~) 
A ~(b~) I k -- 1 . . . . .  n}. The remainder  of  the statement for n = 1 and n = 
2 fol lows f rom Proposit ion 1.2. We can proceed by induction. Suppose  that 
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the statement holds for some n -> 2. Let g = [(al, bl) . . . . .  (an, bn), (an+l, 
bn+P] �9 P[B]*. Using the de Morgan law, we have 

1 e v{~p(ak) A t~(bk)lk = 1 . . . . .  n} 

= ^{  1 O ~p(ak) ^ tP(b~)l~ = 1 . . . . .  n } 

--> tp(a.+l) ^ t~(b.+l) 

since tp(an+l) --< 1 @ tp(ak), k = 1 . . . . .  n, implies 

q~(a,+l) A tp(b,+l) < tp(an+t) --< 1 @ q~(a~) < 1 @ tp(ak) A +(bk) 

k = 1, . . . , n .  

Thus there exists 

(v{,~(a~) ^ ,(bk)lk : 1 . . . . .  n}) G (~P(an+t) A t~(bn+l)) 

= v{tp(ak) ^ ~(b~)]k = 1 . . . . .  n + 1} 

since tp(an+D ^ (v{q~(a~)lk = 1 . . . . .  n}) = 0. 

Every homomorphism m: P -->(0, 1) [i.e., m(a Op b) = m(a) + m(b) 
for all b, a �9 P with existing a Oe  b] has the properties m(0p) = 0 and for 
all orthogonal pairs o f  elements a, b �9 P (i.e., a Qe  b exists and a ^ b = 
0p), if a v b �9 P, then m(a v b) = m(a Oe  b) = m(a) + m(b). If, moreover, 
m(le)  = t, then we call m a state on P. 

Proposition 1.4. I f  s: B ---> <0, 1) and m: P --> <0, 1) are states, then Ix: 
P[B]* --> <0, 1) defined for every f = [(al, bl) . . . . .  (a,, bn)] �9 P[B]* by 
Ix(f)  = s (aO'm(bt )  + "'" + s(an)'m(bn) is a state on P[B]*. 

Proof  Suppose t h a t f  = [(at, bt) . . . . .  (an, bn)], g = [(cl, dr) . . . . .  (Cm, 
din)] �9 P[B]* with existing f |  g. Then 

f O g = [(ai A Cj, bi Ge dj)]i,j 
aiAcj~OB 

and 

t , . l  
aiAcjC'OB 

s(a i A r m(b i @p dj) 

X 
t,J 

aiAcjg=OB 

s(a i A cj)(m(bi) + m(dj)) 

Since s(ai) = ~]'=l s(ai A Cj) and m(cj) = ~=1 s(ai A Cj), we conclude that 
IX(fG g) = Ix(f) + Ix(g). Evidently Ix(l) = 1. 
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We see that in view of the proved propositions, P[B]* has properties 
analogous to those required for the Ptfik sum of a Boolean algebra and an 
orthomodular lattice (Pt~ik, 1986). 

2. COMPLETENESS 

It is known that also for two complete Boolean algebras B~, B2 the 
bounded Boolean power BI[B2]* need not be complete. In this section we 
prove the following statement (we follow the notation of Section 1): 

Theorem 2.1. The bounded Boolean power P[B]* of an effect algebra 
P by a Boolean algebra B is a complete lattice if and only if both P and B 
are complete and at least one of  them is finite. 

We have divided the proof into a sequence of lemmas and propositions. 

Lemma 2.2. Suppose that K C B with vK existing in B and d ~ P. Then 

q~(vK)/x t~(d) = v{q~(a) ,,x t~(d)la e K} 

Proof. Let c = vK. By the definitions of q~ and $ we have r = 
[(vK, 1e), ((vK)',  0e)], ~(d) = [(18, d)]. Suppose that y = [(al, bl) . . . . .  
(an, b~)] --> r ,*, t~(d) = [(a, d), (a', 0)], for every a E K. If, for k ~ { 1, 
. . . .  n }, (vK) ~, ak r 08, then there exists a e K with a ^ ak ~ 0e and then 
d <-- bk. Thus q~(vK) ^ t~(d) ----- y. We conclude that r A t~(d) = v{cp(a) 
A t~(d) la E K}. 

Lemma 2.3. If an effect algebra P~ is a supremum-dense subalgebra of 
an effect algebra P2, then all suprema and infima existing in PI are inherited 
for P2. 

We refer the reader to Rie6anov~i (n.d.), Theorem 1.7, for the proof. 

For every Boolean algebra B its MacNeille completion (i.e., completion 
b j  cuts) is, up to a unique isomorphism over B, a complete Boolean algebra 
B into which B can be supremum-dense embedded (i.e., every element of B 
is a supremum of some elements of B) (Schmidt, 1956). Moreover, the 
embedding o~ preserves all suprema and infima existing in B. We usually 
identify a(B) C_ B with B. In this sense P[B]* is a subalgebra of P[B]* 
(Burris, 1975, Proposition 2.3). 

Proposition 2.4. P[B]* is supremum-dense in P[B]*. 

Proof. L e t f  = [(at, hi) . . . . .  (a,,, b,,)] E P[B]*. Since B is supremum- 
dense in B, there exist Mk _C B with vMk = ak, k = 1 . . . . .  n. Thus by 
Lemma 2.2, q~(ak) ̂  qJ(bk) = q~(vMk) A q~(bk) = V{q~(C) A qJ(bk) lc E Mk}, k 
= 1 . . . . .  n. It follows t h a t f  = v{q~(c) A +(bk) l c e  Mk, k = 1 . . . . .  n}. 
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Similar arguments apply to the case P[B]; we can prove the following 
assertion: 

Proposition 2.5. P[B]* is supremum-dense in P[B]. 

Proposition 2.6. If P[B]* is complete, then P and B are complete. 

Proof (1) Let M C_ P. Let us put D = {d E P Id >-- b for every b 
M}. For every d E D let gd = [(18, d)]. Completeness of P[B]* implies that 
there ex i s t s f  = ^{gdld e D}. Since v{f( t ) l t  e P} = 18, there exists to 
P withf(t0) :~ 08. It follows thatf(to) ^ 1B ~ 0B and hence to -< d for every 
d e D. Moreover, f - - -  gd -> O(b) = [(1B, b)] implies to >- b for ever), b 
M. We conclude that to = vM e P. 

(2) By Proposition 2.4, completeness of P[B]* implies that P[B_]* = 
P[B]*, using also Lemma 2.3. Thus for any K C B there exists vK ~ B and 
[vK, lp), (vK)',  0p)] e P[B]* = P[B], which implies that vK E B. 

Using the de Morgan laws we conclude that P and B are complete lattices. 

Proposition 2.7. If P[B]* is complete, then P[B]* = P[B]* = P[B] and 
at least one of P and B is finite. 

Proof The completeness of P[B]* implies B = B by Proposition 2.6. 
In view of Proposition 2.5 and Lemma 2.3 we obtain P[B]* = P[B]* = 
P[B]. Hence at least one of P and B is finite. 

Proposition 2.8. If P and B are complete and at least one of them is 
finite, then P[B]* is complete. 

Proof (1) Suppose that B is complete and P = {dr . . . . .  d,,}. Let M C 
P[B]*. For i = 1 . . . . .  n let us put Ki = {a E BIq~(a) ^ ~(di) < - f , f  e M} 
and Mi = {tp(a)/x t~(di)la ~ Ki}. Since B is complete, there exists /xKi 
B and by Lemma 2.2 we have q~(vKi)/x d~(di) = v{q~(a)/x +(di)la ~ Ki} = 
vMi E P[B]*. Since P is a lattice, P[B]* is a lattice, too, and thus vM = 
v{vMili  = 1 . . . . .  n} ~ P[B]*. 

(2) Suppose that B is finite and A is the set of all atoms of B. Then 
P[B]* is isomorphic to the direct product I I{Pala  e A}, where Pa = P for 
every a e A. It follows that P[B]* is complete if P is complete. 

Now the proof of Theorem 2.1 follows by Propositions 2.6-2.8. 
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