Pták Sum of a Boolean Algebra with an Effect **Algebra and Its Completeness**

Zdenka Riečanová¹

Received November 24, 1994

The aim of the present paper is to show that a bounded Boolean power of an effect algebra has all the analogous properties required for Pták's sum of a Boolean algebra and an orthomodular lattice and to prove a theorem about its completeness. We also give for elements of that Pták sum an important form for their expression.

1. BOOLEAN POWER OF AN EFFECT ALGEBRA AS A PTAK SUM

In the axiomatic approach to quantum mechanics, the event structure of a physical system is a quantum logic (Pták and Pulmannová, 1981). Recently there has appeared a new axiomatic model, a difference poset (Kôpka and Chovanec, 1994) which is in some sense an effect algebra (Foulis and Bennett, 1994) representing unsharp measurements or observations on a physical system.

Definition 1.1. Let $(P; \bigoplus, 0, 1)$ be a system consisting of a set P with two special elements 0, $1 \in P$ and equipped with a partially defined binary operation \oplus satisfying the following conditions for all p, q, $r \in P$:

- (i) $p \oplus q = q \oplus p$ if one side is defined.
- (ii) $p \oplus (q \oplus r) = (p \oplus r) \oplus q$ if one side is defined.
- (iii) For every $p \in P$ there exists a unique $q \in P$ such that $p \oplus q = 1$.
- (iv) If $1 \oplus p$ is defined, then $p = 0$.

Then $(P; \bigoplus, 0, 1)$ is called an *effect algebra.*

Department of Mathematics, Faculty of Electrical Engineering and Information Technology, Slovak Technical University, 812 19 Bratislava, Slovak Republic.

In every effect algebra we introduce the partial ordering via $a \leq b$ iff there exists $c \in P$ with $a \oplus c = b$ and the partially defined binary operation Θ via $b\Theta a$ is defined and $b\Theta a = c$ iff $a\Theta c$ is defined and $a\Theta c = b$, for all a, b, $c \in P$.

From now on, we make the assumptions that $(B; \vee, \wedge, 0_B, 1_B)$ is a Boolean algebra and $(P, \bigoplus_P, 0_P, 1_P)$ is an effect algebra and we denote them briefly B and P. According to Burris (1975), we shall call a *bounded Boolean power* (of P by B) the effect algebra which has as its universe the set

 $P[B]^* = \{f \in B^P | f(P) \text{ is a finite subset of } B\}$

with
$$
f(P) = 1_B
$$
 and $f(t_1) \wedge f(t_2) = 0_B$ for all $t_1 \neq t_2, t_1, t_2 \in P$

The partial binary operation \oplus on $P[B]^*$ is defined as follows:

For f, $g \in P[B]^*, f \oplus g$ is defined iff for all $a, b \in P$ with $f(a) \wedge g(b)$ $\neq 0_B$ the operation $a \bigoplus_{P} b$ is defined, in which case

$$
f \oplus g(t) = \vee \{f(a) \wedge g(b) | a, b \in P \text{ with } a \oplus_P b = t\}, \quad t \in P
$$

Moreover,

$$
0(0_P) = 1_B \text{ and } 0(t) = 0_B \text{ for all } t \neq 0_P
$$

$$
1(1_P) = 1_B \text{ and } 1(t) = 0_B \text{ for all } t \neq 1_P
$$

We leave to the reader the verification that $(P[B]^*, \bigoplus, 0, 1)$ is an effect algebra. We also will leave to the reader the verification that the partial order on $P[B]^*$ is defined via

$$
f \le g
$$
 iff $\sqrt{f(a)} \wedge g(b) | a, b \in P$ with $a \le b$ = 1

and the difference operation \ominus (associated to \oplus) is as follows:

 $f \ominus g$ is defined iff $f \leq g$, in which case $(f \ominus g)(t) = \vee \{f(a) \wedge g(b) | a, g(b) \}$ $b \in P$ with $a \ominus_{P} b = t$, $t \in P$.

If B is complete, then we can omit in the definition the requirement that *f(P)* is finite; we obtain a *Boolean power P[B]* (Burris, 1975).

It is easily seen that for every $f \in P[B]^*$ there exist a uniquely defined $n \in N$, mutually orthogonal nonzero elements $a_1, a_2, \ldots, a_n \in B$ with $\vee \{a_k | k\}$ $= 1, 2, \ldots, n$ = 1, and mutually different elements $b_1, b_2, \ldots, b_n \in P$ such that $f(b_k) = a_k$ for $k = 1, 2, ..., n$ and $f(t) = 0_B$ for every $t \in P\backslash \{b_1,$ b_2, \ldots, b_n . According to that we shall use (for brevity) the notation $[(a_1, a_2), \ldots, b_n]$ b_1 , ..., (a_n, b_n)] instead of the definition of f and in that case we shall write $f = [(a_1, b_1), \ldots, (a_n, b_n)]$. Thus we have $1 = [(1_B, 1_P)]$ and $0 = [(1_B, 0_P)]$. It is routine to show that the maps

$$
\varphi: a \in B \to \varphi(a) = [(a, 1_p), (a', 0_p)] \in P[B]^*
$$

$$
\psi: b \in P \to \psi(b) = [(1_B, b)] \in P[B]^*
$$

are embeddings which preserve all suprema and infima existing in B, resp. P.

Proposition 1.1. If for elements a, b of an effect algebra P there exist $a \vee b$, $a \wedge b$, and $a \bigoplus_{p} b$, then $a \bigoplus_{p} b = (a \vee b) \bigoplus_{p} (a \wedge b)$.

See Riečanová (n.d.) for the proof.

Proposition 1.2. For all $0_B \neq a \in B$, $b \in P$ there exists $\varphi(a) \wedge \psi(b)$. Moreover, if $a, c \in B$ are such that $a \wedge c = 0_B$ and $b, d \in P$, then there exists

 $(\varphi(a) \wedge \psi(b)) \vee (\varphi(c) \wedge \psi(d)) = (\varphi(a) \wedge \psi(b)) \oplus (\varphi(c) \wedge \psi(d))$

Proof. It is easy to see that

$$
(\varphi(a) \land \psi(b)) \lor (\varphi(c) \land \psi(d))
$$

= [(a, b), (a', 0_P)] \lor [(c, d), (c', 0_P)]
= [(a' \land c, 0_P \lor d), (a \land c', b \lor 0_P), (a' \land c', 0_P)]
= [(a, b), (c, d), (a' \land c', 0_P)]

if $a' \wedge c' \neq 0_B$ and it is equal to $[(a, b), (c, d)]$ if $a' \wedge c' = 0_B$. Moreover,

$$
1 \ominus \varphi(c) \land \psi(d)
$$

= [(1_B, 1_P)] \ominus [(c, d), (c', 0_P)]
= [(c, 1_P \ominus _P d), (c', 1_P \ominus _P 0_P)]
 \geq [(a, b), (a', 0_P)]
= $\varphi(a) \land \psi(b)$

which implies that $(\varphi(a) \wedge \psi(b)) \oplus (\varphi(c) \wedge \psi(d))$ exists. Using Proposition 1.1, we have

$$
(\varphi(a) \land \psi(b)) \oplus (\varphi(c) \land \psi(d))
$$

= (\varphi(a) \land \psi(b)) \lor (\varphi(c) \land \psi(d))

since $\varphi(a) \wedge \varphi(c) = 0$.

Proposition 1.3. Let
$$
f = [(a_1, b_1), \dots, (a_n, b_n)] \in P[B]^*
$$
. Then
\n
$$
f = \sqrt{\varphi(a_k)} \wedge \psi(b_k) | k = 1, 2, \dots, n
$$
\n
$$
= (\varphi(a_1) \wedge \psi(b_1)) \oplus \dots \oplus (\varphi(a_n) \wedge \psi(b_n))
$$

Proof. It is routine to show that $f = [(a_1, b_1), \ldots, (a_n, b_n)] = \vee \{ \varphi(a_k) \}$ $\lambda \psi(b_k)$ $k = 1, \ldots, n$. The remainder of the statement for $n = 1$ and $n =$ 2 follows from Proposition 1.2. We can proceed by induction. Suppose that the statement holds for some $n \ge 2$. Let $g = [(a_1, b_1), \ldots, (a_n, b_n), (a_{n+1},$ (b_{n+1})] \in P[B]*. Using the de Morgan law, we have

$$
1 \ominus \vee \{\varphi(a_k) \wedge \psi(b_k) | k = 1, ..., n\}
$$

= $\wedge \{1 \ominus \varphi(a_k) \wedge \psi(b_k) | k = 1, ..., n\}$
 $\geq \varphi(a_{n+1}) \wedge \psi(b_{n+1})$

since $\varphi(a_{n+1}) \leq 1 \ominus \varphi(a_k), k = 1, \ldots, n$, implies

$$
\varphi(a_{n+1}) \wedge \psi(b_{n+1}) \leq \varphi(a_{n+1}) \leq 1 \ominus \varphi(a_k) \leq 1 \ominus \varphi(a_k) \wedge \psi(b_k)
$$

$$
k = 1, ..., n.
$$

Thus there exists

$$
(\vee \{\varphi(a_k) \wedge \psi(b_k) | k = 1, ..., n\}) \oplus (\varphi(a_{n+1}) \wedge \psi(b_{n+1}))
$$

= $\vee \{\varphi(a_k) \wedge \psi(b_k) | k = 1, ..., n+1\}$

since $\varphi(a_{n+1}) \wedge (\vee \{ \varphi(a_k) | k = 1, \ldots, n \}) = 0.$

Every *homomorphism m*: $P \rightarrow (0, 1)$ [i.e., $m(a \oplus_{P} b) = m(a) + m(b)$ for all b, $a \in P$ with existing $a \bigoplus_{P} b$] has the properties $m(0_P) = 0$ and for all orthogonal pairs of elements $a, b \in P$ (i.e., $a \bigoplus_{P} b$ exists and $a \wedge b =$ (0_P) , if $a \vee b \in P$, then $m(a \vee b) = m(a \bigoplus_P b) = m(a) + m(b)$. If, moreover, $m(1_P) = 1$, then we call *m* a *state* on *P*.

Proposition 1.4. If s: $B \to \langle 0, 1 \rangle$ and m: $P \to \langle 0, 1 \rangle$ are states, then μ : $P[B]^* \to \langle 0, 1 \rangle$ defined for every $f = [(a_1, b_1), \ldots, (a_n, b_n)] \in P[B]^*$ by $\mu(f) = s(a_1) \cdot m(b_1) + \cdots + s(a_n) \cdot m(b_n)$ is a state on $P[B]^*$.

Proof. Suppose that $f = [(a_1, b_1), \ldots, (a_n, b_n)]$, $g = [(c_1, d_1), \ldots, (c_m, d_n)]$ (d_m)] \in *P*[*B*]* with existing $f \oplus g$. Then

$$
f \oplus g = [(a_i \wedge c_j, b_i \oplus_P d_j)]_{\substack{i,j \\ a_i \wedge c_j \neq 0}} \wedge g
$$

and

$$
\mu(f \oplus g) = \sum_{\substack{i,j \\ a_i \sim c_j \neq 0_B}} s(a_i \wedge c_j) \cdot m(b_i \oplus_p d_j)
$$

$$
= \sum_{\substack{i,j \\ a_i \sim c_j \neq 0_B}} s(a_i \wedge c_j) (m(b_i) + m(d_j))
$$

Since $s(a_i) = \sum_{i=1}^m s(a_i \wedge c_i)$ and $m(c_i) = \sum_{i=1}^n s(a_i \wedge c_i)$, we conclude that $\mu(f \oplus g) = \mu(f) + \mu(g)$. Evidently $\mu(1) = 1$.

Ptfik **Sum of Boolean Algebra with Effect Algebra** 1723

We see that in view of the proved propositions, $P[B]^*$ has properties analogous to those required for the Ptfik sum of a Boolean algebra and an orthomodular lattice (Pták, 1986).

2. COMPLETENESS

It is known that also for two complete Boolean algebras B_1 , B_2 the bounded Boolean power $B_1[B_2]^*$ need not be complete. In this section we prove the following statement (we follow the notation of Section 1):

Theorem 2.1. The bounded Boolean power $P[B]^*$ of an effect algebra P by a Boolean algebra B is a complete lattice if and only if both P and B are complete and at least one of them is finite.

We have divided the proof into a sequence of lemmas and propositions.

Lemma 2.2. Suppose that $K \subset B$ with $\vee K$ existing in B and $d \in P$. Then

$$
\varphi(\vee K) \wedge \psi(d) = \vee \{ \varphi(a) \wedge \psi(d) | a \in K \}
$$

Proof. Let $c = \vee K$. By the definitions of φ and ψ we have $\varphi(\vee K)$ = $[(\vee K, 1_P), ((\vee K)', 0_P)], \psi(d) = [(1_B, d)].$ Suppose that $y = [(a_1, b_1), \ldots,$ $(a_n, b_n] \ge \varphi(a) \wedge \psi(d) = [(a, d), (a', 0)],$ for every $a \in K$. If, for $k \in \{1, \}$ \ldots , n}, $(\forall K) \wedge a_k \neq 0_R$, then there exists $a \in K$ with $a \wedge a_k \neq 0_R$ and then $d \leq b_k$. Thus $\varphi(\vee K) \wedge \psi(d) \leq y$. We conclude that $\varphi(\vee K) \wedge \psi(d) = \vee \{ \varphi(a)$ $\wedge \psi(d) \mid a \in K$.

Lemma 2.3. If an effect algebra P_1 is a supremum-dense subalgebra of an effect algebra P_2 , then all suprema and infima existing in P_1 are inherited for P_2 .

We refer the reader to Riečanová (n.d.), Theorem 1.7, for the proof.

For every Boolean algebra B its MacNeille completion (i.e., completion by cuts) is, up to a unique isomorphism over B , a complete Boolean algebra B into which B can be supremum-dense embedded (i.e., every element of B is a supremum of some elements of B) (Schmidt, 1956). Moreover, the embedding α preserves all suprema and infima existing in B. We usually identify $\alpha(B) \subset B$ with B. In this sense P[B]* is a subalgebra of P[B]* (Burris, 1975, Proposition 2.3).

Proposition 2.4. $P[B]^*$ is supremum-dense in $P[\overline{B}]^*$.

Proof. Let $f = [(a_1, b_1), \ldots, (a_n, b_n)] \in P[\overline{B}]^*$. Since B is supremumdense in \overline{B} , there exist $M_k \subseteq B$ with $\forall M_k = a_k, k = 1, \ldots, n$. Thus by Lemma 2.2, $\varphi(a_k) \wedge \psi(b_k) = \varphi(\vee M_k) \wedge \psi(b_k) = \vee {\varphi(c) \wedge \psi(b_k) \mid c \in M_k}, k$ = 1, ..., n. It follows that $f = \vee \{ \varphi(c) \wedge \psi(b_k) \mid c \in M_k, k = 1, \ldots, n \}.$

Similar arguments apply to the case $P[\overline{B}]$; we can prove the following assertion:

Proposition 2.5. $P[B]^*$ is supremum-dense in $P[\overline{B}]$.

Proposition 2.6. If $P[B]^*$ is complete, then P and B are complete.

Proof. (1) Let $M \subseteq P$. Let us put $D = \{d \in P | d \geq b \text{ for every } b \in P\}$ M}. For every $d \in D$ let $g_d = [(1_B, d)]$. Completeness of $P[B]^*$ implies that there exists $f = \land \{g_d | d \in D\}$. Since $\lor \{f(t) | t \in P\} = 1_B$, there exists $t_0 \in$ P with $f(t_0) \neq 0_B$. It follows that $f(t_0) \wedge 1_B \neq 0_B$ and hence $t_0 \leq d$ for every $d \in D$. Moreover, $f \ge g_d \ge \psi(b) = [(1_B, b)]$ implies $t_0 \ge b$ for every $b \in$ M. We conclude that $t_0 = \sqrt{M} \in P$.

(2) By Proposition 2.4, completeness of $P[B]^*$ implies that $P[B]^* =$ $P[B]^*$, using also Lemma 2.3. Thus for any $K \subset B$ there exists $\vee K \in \overline{B}$ and $[\forall K, 1_P), (\forall K)'$, $0_P] \in P[B]^* = P[B]$, which implies that $\forall K \in B$.

Using the de Morgan laws we conclude that P and B are complete lattices.

Proposition 2.7. If $P[B]^*$ is complete, then $P[B]^* = P[\overline{B}]^* = P[\overline{B}]$ and at least one of P and B is finite.

Proof. The completeness of $P[B]^*$ implies $B = \overline{B}$ by Proposition 2.6. In view of Proposition 2.5 and Lemma 2.3 we obtain $P[B]^* = P[B]^* =$ $P[\overline{B}]$. Hence at least one of P and B is finite.

Proposition 2.8. If P and B are complete and at least one of them is finite, then $P[B]^*$ is complete.

Proof. (1) Suppose that B is complete and $P = \{d_1, \ldots, d_n\}$. Let $M \subseteq$ $P[B]^*$. For $i = 1, \ldots, n$ let us put $K_i = \{a \in B | \varphi(a) \wedge \psi(d_i) \leq f, f \in M\}$ and $M_i = {\varphi(a) \wedge \psi(d_i)}|a \in K_i$. Since B is complete, there exists $\wedge K_i \in$ B and by Lemma 2.2 we have $\varphi(\vee K_i) \wedge \psi(d_i) = \vee {\varphi(a) \wedge \psi(d_i)} | a \in K_i$ $\vee M_i \in P[B]^*$. Since P is a lattice, $P[B]^*$ is a lattice, too, and thus $\vee M =$ $\vee \{\vee M_i | i = 1, \ldots, n\} \in P[B]^*$.

(2) Suppose that B is finite and A is the set of all atoms of B . Then $P[B]^*$ is isomorphic to the direct product $\Pi\{P_a | a \in A\}$, where $P_a = P$ for every $a \in A$. It follows that $P[B]^*$ is complete if P is complete.

Now the proof of Theorem 2.1 follows by Propositions 2.6-2.8.

REFERENCES

Bunis, S. (1975). Boolean powers, *Algebra Universalis,* 5, 341-360.

Dvurečenskij, A. (1994). Tensor product of difference posets, *Transactions of the American Mathematical Society,* to appear,

Ptdk Sum of Boolean Algebra with Effect Algebra 1725

- Foulis, D. J., and Bennett, M. K. (1994). Effect algebras and unsharp quantum logics, *Foundations of Physics,* 24.
- Foulis, D., and Pták, P. (1993). On the tensor product of Boolean algebra and an orthoalgebra, preprint.
- Kalmbach, G. (1983). *Orthomodular Lattices,* Academic Press, New York.
- K6pka, E, and Chovanec, E (1994). D-posets, *Mathematica SIovaca,* 44(1), 21-34.
- Pták, P. (1986). Summing of Boolean algebras and logics, *Demonstratio Mathematica*, 19(2), 349-357.
- Pták, P., and Pulmannová, S. (1991). *Orthomodular Structures as Quantum Logics*, Kluwer, Dordrecht.
- Riečanová, Z. (n.d.). On proper orthoalgebras, difference posets and Abelian relative inverse semigroups, preprint STU Bratislava, Slovakia.
- Riečanová, Z. (n.d.). Completeness of the bounded Boolean powers of orthomodular lattices, to appear in Algebra Universalis.
- Schmidt, J. (1956). Zur Kennzeichnung der Dedekind-MacNeilleschen Hulle einer Geordneten Menge, *Archiv der Mathematik,* 7, 241-249.